回顾
在上一篇 我们大概了解到了Lock
和synchronized
的共同点,再简单总结下:
Lock
主要是自定义一个 counter,从而利用CAS
对其实现原子操作,而synchronized
是c++ hotspot
实现的 monitor(具体的咱也没看,咱就不说)- 二者都可重入(递归,互调,循环),其本质都是维护一个可计数的 counter,在其它线程访问加锁对象时会判断 counter 是否为 0
- 理论上讲二者都是阻塞式的,因为线程在拿锁时,如果拿不到,最终的结果只能等待(前提是线程的最终目的就是要获取锁)读写锁分离成两把锁了,所以不一样
举个例子:线程 A 持有了某个对象的 monitor,其它线程在访问该对象时,发现 monitor 不为 0,所以只能阻塞挂起或者加入等待队列,等着线程 A 处理完退出后将 monitor 置为 0。在线程 A 处理任务期间,其它线程要么循环访问 monitor,要么一直阻塞等着线程 A 唤醒,再不济就真的如我所说,放弃锁的竞争,去处理别的任务。但是应该做不到去处理别的任务后,任务处理到一半,被线程 A 通知后再回去抢锁
公平锁与非公平锁
不共享 counter
// 非公平锁在第一次拿锁失败也会调用该方法 public final void acquire(int arg) { // 没拿到锁就加入队列 if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); } // 非公平锁方法 final void lock() { // 走来就尝试获取锁 if (compareAndSetState(0, 1)) setExclusiveOwnerThread(Thread.currentThread()); else acquire(1); // 上面那个方法 } // 公平锁 Acquire 计数 protected final boolean tryAcquire(int acquires) { final Thread current = Thread.currentThread(); // 拿到计数 int c = getState(); if (c == 0) { // 公平锁会先尝试排队 非公平锁少个 !hasQueuedPredecessors() 其它代码一样 if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) // overflow throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; } /** * @return { @code true} if there is a queued thread preceding the // 当前线程前有线程等待,则排队 * current thread, and { @code false} if the current thread * is at the head of the queue or the queue is empty // 队列为空不用排队 * @since 1.7 */ public final boolean hasQueuedPredecessors() { // The correctness of this depends on head being initialized // before tail and on head.next being accurate if the current // thread is first in queue. Node t = tail; // Read fields in reverse initialization order Node h = head; Node s; // 当前线程处于头节点的下一个且不为空则不用排队 // 或该线程就是当前持有锁的线程,即重入锁,也不用排队 return h != t && ((s = h.next) == null || s.thread != Thread.currentThread()); } // 加入等待队列 final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor(); if (p == head && tryAcquire(arg)) { setHead(node); p.next = null; // help GC failed = false; return interrupted; } // 获取失败会检查节点状态 // 然后 park 线程 if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } } /** waitStatus value to indicate thread has cancelled */ static final int CANCELLED = 1; // 线程取消加锁 /** waitStatus value to indicate successor's thread needs unparking */ static final int SIGNAL = -1; // 解除线程 park /** waitStatus value to indicate thread is waiting on condition */ // static final int CONDITION = -2; // 线程被阻塞 /** * waitStatus value to indicate the next acquireShared should * unconditionally propagate */ static final int PROPAGATE = -3; // 广播 // 官方注释 /** * Status field, taking on only the values: * SIGNAL: The successor of this node is (or will soon be) * blocked (via park), so the current node must * unpark its successor when it releases or * cancels. To avoid races, acquire methods must * first indicate they need a signal, * then retry the atomic acquire, and then, * on failure, block. * CANCELLED: This node is cancelled due to timeout or interrupt. * Nodes never leave this state. In particular, * a thread with cancelled node never again blocks. * CONDITION: This node is currently on a condition queue. * It will not be used as a sync queue node * until transferred, at which time the status * will be set to 0. (Use of this value here has * nothing to do with the other uses of the * field, but simplifies mechanics.) * PROPAGATE: A releaseShared should be propagated to other * nodes. This is set (for head node only) in * doReleaseShared to ensure propagation * continues, even if other operations have * since intervened. * 0: None of the above * * The values are arranged numerically to simplify use. * Non-negative values mean that a node doesn't need to * signal. So, most code doesn't need to check for particular * values, just for sign. * * The field is initialized to 0 for normal sync nodes, and * CONDITION for condition nodes. It is modified using CAS * (or when possible, unconditional volatile writes). */ volatile int waitStatus;复制代码
读锁与写锁(共享锁与排他锁)
读锁:共享 counter
写锁:不共享 counter
// 读写锁和线程池的类似之处 // 高 16 位为读计数,低 16 位为写计数 static final int SHARED_SHIFT = 16; static final int SHARED_UNIT = (1 << SHARED_SHIFT); static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1; static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1; /** Returns the number of shared holds represented in count. */ // 获取读计数 static int sharedCount(int c) { return c >>> SHARED_SHIFT; } /** Returns the number of exclusive holds represented in count. */ // 获取写计数 static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; } /** * A counter for per-thread read hold counts. 每个线程自己的读计数 * Maintained as a ThreadLocal; cached in cachedHoldCounter. */ static final class HoldCounter { int count; // initially 0 // Use id, not reference, to avoid garbage retention final long tid = LockSupport.getThreadId(Thread.currentThread()); // 线程 id } // 尝试获取读锁 protected final int tryAcquireShared(int unused) { // ReentrantReadWriteLock ReadLock 读锁 /* * Walkthrough: * 1. If write lock held by another thread, fail. * 2. Otherwise, this thread is eligible for * lock wrt state, so ask if it should block * because of queue policy. If not, try * to grant by CASing state and updating count. * Note that step does not check for reentrant * acquires, which is postponed to full version * to avoid having to check hold count in * the more typical non-reentrant case. * 3. If step 2 fails either because thread * apparently not eligible or CAS fails or count * saturated, chain to version with full retry loop. */ Thread current = Thread.currentThread(); int c = getState(); // 如果写锁计数不为零,且当前线程不是写锁持有线程,则可以获得读锁 // 言外之意,获得写锁的线程不可以再获得读锁 // 个人认为不用判断写计数也行 if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current) return -1; // 获得读计数 int r = sharedCount(c); // 检查等待队列 读计数上限 if (!readerShouldBlock() && r < MAX_COUNT && // 在高 16 位更新 compareAndSetState(c, c + SHARED_UNIT)) { if (r == 0) { firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { firstReaderHoldCount++; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != LockSupport.getThreadId(current)) // cachedHoldCounter 每个线程自己的读计数,非共享。但是锁计数与其它读操作共享,不与写操作共享 // readHolds 为ThreadLocalHoldCounter,继承于 ThreadLocal,存 cachedHoldCounter cachedHoldCounter = rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; } return 1; } // 说明在排队中,就一直遍历,直到队首,实际起作用的代码和上面代码差不多 // 大师本人也说了代码有冗余 /* * This code is in part redundant with that in * tryAcquireShared but is simpler overall by not * complicating tryAcquireShared with interactions between * retries and lazily reading hold counts. */ return fullTryAcquireShared(current); } // 获得写锁 protected final boolean tryAcquire(int acquires) { /* * Walkthrough: * 1. If read count nonzero or write count nonzero * and owner is a different thread, fail. * 读锁不为零(读锁排除写锁,但是与读锁共享) * 写锁不为零且锁持有者不为当前线程,则获得锁失败 * 2. If count would saturate, fail. (This can only * happen if count is already nonzero.) // 计数器已达最大值,获得锁失败 * 3. Otherwise, this thread is eligible for lock if * it is either a reentrant acquire or * queue policy allows it. If so, update state * and set owner. // 重入是可以的;队列策略也是可以的,会在下面解释 */ Thread current = Thread.currentThread(); int c = getState(); // 获得写计数 int w = exclusiveCount(c); if (c != 0) { // (Note: if c != 0 and w == 0 then shared count != 0) // 检查所持有线程 if (w == 0 || current != getExclusiveOwnerThread()) return false; // 检查最大计数 if (w + exclusiveCount(acquires) > MAX_COUNT) throw new Error("Maximum lock count exceeded"); // Reentrant acquire 线程重入获得锁,直接更新计数 setState(c + acquires); return true; } // 队列策略 // state 为 0,检查是否需要排队 // 针对公平锁:去排队,如果当前线程在队首或等待队列为空,则返回 false,自然会走后面的 CAS // 否则就返回 true,则进入 return false; // 针对非公平锁:写死为 false,直接 CAS if (writerShouldBlock() || !compareAndSetState(c, c + acquires)) return false; // 设置当前写锁持有线程 setExclusiveOwnerThread(current); return true; } // 因为读锁是多个线程共享读计数,各自维护了自己的读计数,所以释放的时候比写锁释放要多些操作 protected final boolean tryReleaseShared(int unused) { Thread current = Thread.currentThread(); // 当前线程是第一读线程的操作 // firstReader 作为字段缓存,是考虑到第一次读的线程使用率高? if (firstReader == current) { // assert firstReaderHoldCount > 0; if (firstReaderHoldCount == 1) firstReader = null; else firstReaderHoldCount--; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != LockSupport.getThreadId(current)) rh = readHolds.get(); int count = rh.count; if (count <= 1) { readHolds.remove(); if (count <= 0) throw unmatchedUnlockException(); } --rh.count; } for (;;) { int c = getState(); int nextc = c - SHARED_UNIT; if (compareAndSetState(c, nextc)) // Releasing the read lock has no effect on readers, // but it may allow waiting writers to proceed if // both read and write locks are now free. return nextc == 0; } }复制代码
总结一下
公平锁和非公平锁的“锁”实现是基于CAS
,公平性基于内部维护的Node
链表
读写锁,可以粗略的理解为读和写两种状态,所以这儿的设计类似线程池的状态。只不过,读计数是可以多个读线程共享的(排除写锁),每个读的线程都会维护自己的读计数。写锁的话,独占写计数,排除一切其他线程。